strengthening the materials core of manufacturing enterprises
DatapointLabs is now part of Applus laboratories

Posts in Category: 'DIGIMAT'


Datapoint Newsletter: Summer '20, Vol. 26.2

Full Composites Testing Capabilities

...read full post

Aerospace and Defense Automotive Structural Analysis LS-DYNA Abaqus DIGIMAT Composites Newsletters Altair HyperWorks


Datapoint Newsletter: Summer '19, Vol. 25.3

New DatapointLabs Website; High Temperature Crash Properties

...read full post

Density Rheology Thermal Mechanical Plastics Automotive High Speed Testing Injection Molding Structural Analysis LS-DYNA ANSYS DIGIMAT Composites Newsletters Validation


Datapoint Newsletter: Spring '19, Vol. 25.2

Full metals testing capability added to DatapointLabs test catalog

...read full post

Mechanical Metals Automotive Structural Analysis Moldflow LS-DYNA DIGIMAT Composites Newsletters Validation Altair HyperWorks


The Role of Material Data in the Simulation of Injection Molded Parts

The modeling of material behavior for injection molded plastics is a vital step for good simulation results. We detail the types of material data needed by various injection-molding simulation programs, factors that can affect simulation quality including test techniques and process variables such as moisture content. The case of fiber filled plastics is covered along with the extension to structural analysis applications.

...read full post

Plastics Viscoelastic Rate Dependency Injection Molding Nonlinear Material Models Structural Analysis Moldflow LS-DYNA Abaqus Moldex3D DIGIMAT SIGMASOFT Universal Molding Simpoe-Mold Presentations Validation


Datapoint Newsletter: Summer '17, Volume 23.3

Upcoming Events, Technical Team Expands

...read full post

Plastics Injection Molding Structural Analysis Moldflow LS-DYNA ANSYS Moldex3D DIGIMAT Universal Molding Newsletters Validation ANSA


Determination and Use of Material Properties for Finite Element Analysis: Book Review

This book is intended to be a companion to the NAFEMS book, "An Introduction to the Use of Material Models in FE". It informs Finite Element Analysis users of the manner and methodologies by which materials are tested in order to calibrate material models currently implemented in various FEA programs. While the authors seek first to satisfy the basic material models outlined in the companion book, they make important extensions to FEA used in currently active areas including explicit simulation.

...read full post

Mechanical Plastics Rubbers Foams Metals Hyperelastic Viscoelastic Plasticity Rate Dependency Yielding/Failure Analysis Aerospace and Defense Automotive Biomedical Building Materials Consumer Products Energy and Petroleum Material Supplier Furniture Industrial Goods CAE Vendor/Supplier Packaging Home Appliances Research Laboratory High Speed Testing Nonlinear Material Models Structural Analysis LS-DYNA Abaqus ANSYS DIGIMAT SOLIDWORKS MSC.DYTRAN MSC.MARC MSC.NASTRAN NX Nastran PAM-COMFORT PAM-CRASH Altair RADIOSS SIMULIA Book Review


From Manufacturing to Design Validation

[We] introduced the topic of injection molding process simulation and the influence of the manufacturing process on structural analysis. The strength and stiffness of a part can be inaccurately represented if the manufacturing process conditions are not properly considered. This results in a different calculation of system natural frequencies or improper estimation of the energy absorbing characteristics. We continue on this topic, extending the scope to advanced technologies available in the Altair Partner Alliance (APA) to help solve the problem of proper design validation with fiber reinforced plastics.

...read full post

Mechanical Aerospace and Defense Automotive Injection Molding Structural Analysis Moldex3D DIGIMAT Papers Altair RADIOSS Newsletters Validation


Challenges in the Modeling of Plastics in Computer Simulation

Finite-element analysis and injection-molding simulation are two technologies that are seeing widespread use today in the design of plastic components. Limitations exist in our ability to mathematically describe the complexity of polymer behavior to these software packages. Material models commonly used in finite-element analysis were not designed for plastics, making it difficult to correctly describe non-linear behavior and plasticity of these complex materials. Time-based viscoelastic phenomena further complicate analysis. Dealing with fiber fillers brings yet another layer of complexity. It is vital to the plastics engineer to comprehend these gaps in order to make good design decisions. Approaches to understanding and dealing with these challenges, including practical strategies for everyday use, will be discussed.

...read full post

Mechanical Plastics Blow Molding Extrusion Injection Molding Nonlinear Material Models Structural Analysis Thermoforming LS-DYNA Abaqus DIGIMAT Presentations


Software for Creating and Managing Material Specifications 

Material specifications define properties for incoming materials to meet required criteria. We present software that manages creation of material specifications, input of properties and material composition; and provides a way to evaluate qualification per specification. While it is designed for OEM/Tier n environments, it is also applicable for materials suppliers.

...read full post

Automotive Moldflow LS-DYNA Abaqus ANSYS Moldex3D DIGIMAT SIGMASOFT SOLIDWORKS ADINA ANSYS FIDAP B-Sim Cadmould Altair HyperXtrude MSC.DYTRAN MSC.MARC MSC.NASTRAN Universal Molding NX Nastran PAM-CRASH PAM-FORM PlanetsX Polycad POLYFLOW Blow Molding POLYFLOW Extrusion POLYFLOW Thermoforming PolyXtrue Altair RADIOSS Simpoe-Mold T-Sim VEL VISI Flow WinTXS Presentations


Datapoint Newsletter: Summer '14, Volume 20.3

New Developments, Verification & Validation, Digimat-MX

...read full post

DIGIMAT Newsletters


Comments on the Testing and Management of Plastics Material Data 

Plastics appeared as design materials of choice about 30 years ago. They brought with them huge design challenges because their multi-variable, non-linear nature was not well understood by engineers trained to work in a linear elastic world. We outline a 20 year journey accompanying our customers in their efforts to understand and simulate these remarkable materials to produce the highly reliable plastic products of today. We discuss challenges related to processes such as injection molding vs. blow-molding; coping with filled plastics; the difficulties of modeling polymers for crash applications. We include our latest findings related to volumetric yield in polymers and its relationship to failure. We describe the material database technology that was created to store this kind of multi-variable data and the analytical tools created to help the CAE engineer understand and use plastics material data.

...read full post

Plastics Automotive Blow Molding High Speed Testing Injection Molding Nonlinear Material Models Structural Analysis Moldflow LS-DYNA Abaqus ANSYS Moldex3D DIGIMAT Universal Crash Universal Molding Universal Structural PAM-CRASH Presentations


Datapoint Newsletter: Fall '11, Volume 17.3

Expansion: New Lab Space, New TestPaks. DIGIMAT MX Reverse Engineering Update.

...read full post

Mechanical DIGIMAT PAM-COMFORT Newsletters


Testing for Crash & Safety Simulation

The testing of materials for use in crash and safety simulations and the conversion of test data into material models is a process that is not well standardized in the industry. Consequently, CAE users face uncertainty and risk in this process that can have a negative impact on simulation quality. In this workshop, we present approaches currently used in the US for the gathering of high quality test data plus the acclaimed Matereality CAE Modeler software that is used to transform high strain-rate data into crash material cards.

...read full post

Automotive High Speed Testing Nonlinear Material Models Structural Analysis LS-DYNA Abaqus ANSYS DIGIMAT SIGMASOFT NX Nastran PAM-CRASH Altair RADIOSS Presentations


A Standardized Methodology for the DigimatMX Reverse Engineering Process 

We present a methodology for DIGIMAT users to perform the DIGIMAT MX reverse engineering process to obtain material parameter inputs for crash, elasto-plastic, creep and visco-elasticity. The injection-molding process used involves a standardized plaque geometry with fully developed flow, with test specimens taken from a specific plaque location. A standardized testing procedure is applied and the resulting DIGIMAT MX inputs are handled in a streamlined data stream, which saves time and improves the reliability of the reverse engineering process. The DIGIMAT MX reverse engineering itself can be performed as a service in collaboration with e-Xstream. This gives the user a speedy and tightly controlled process for performing complex finite element analysis with filled plastics

...read full post

Blow Molding Extrusion High Speed Testing Injection Molding Nonlinear Material Models Structural Analysis DIGIMAT Presentations


Datapoint Newsletter: Spring '10, Volume 16.2

Global Expansion Update. LS-DYNA Support Update. New TestPaks Partner. Photo Documentation of Testing.

...read full post

LS-DYNA DIGIMAT Newsletters