September 26, 2024 | by DatapointLabs | views 330
Our presentation, “Beyond Standards: Material Testing and Processing for Successful Simulations of Polymeric Materials (LAW76)”, focuses on the Semi-Analytical Model for Polymers (SAMP), a material law developed for simulating complex polymer behavior in industries like automotive and aerospace. SAMP integrates strain-rate dependencies and a damage model for accurate predictions in crash and impact scenarios but faces limitations like slow convergence and the absence of a damage model that incorporates strain-rate and triaxiality dependencies. We emphasize the need to go beyond standardized testing, advocating for tailored tests that better reflect real-world conditions, such as varying strain rates, geometries, and environmental factors. This presentation also details a semi-automated calibration process for SAMP and BIQUAD models using iterative workflows to optimize simulation accuracy for tension, compression, shear, and impact tests. Ultimately, SAMP’s flexibility and predictive accuracy make it a powerful tool, but its successful implementation requires advanced knowledge, customized testing, and careful calibration to ensure stability and reliability in material simulations.
...read full post
Plastics
Yielding/Failure Analysis
Altair RADIOSS
Presentations
Validation
October 13, 2020 | by Marian Bulla | views 2489
Presented by Marian Bulla, Altair Engineering, at the CARHS Automotive CAE Grand Challenge 2020.
...read full post
Nonlinear Material Models
Structural Analysis
Altair RADIOSS
Presentations
Validation
April 01, 2019 | by DatapointLabs | views 3824
Keynote address delivered at NAFEMS seminar on "Material Properties in Structural Calculation: Modeling, Calibration, Simulation & Optimization."
...read full post
Structural Analysis
Presentations
Validation
Materials Information Management
March 13, 2019 | by DatapointLabs | views 4812
Multi-scale material models are being increasing applied for high level simulation of complex materials such as UD layups, fabric laminate composites, fiber-filled plastics. These models require data inputs from a variety of material tests which are then assembled into models used in the finite element solvers. We present an infrastructure for the digitalization of such information, where the required material data are collected including a process for maintaining traceability and consistency of the source data. Information about the compositional characteristics and processing history are captured. Built-in software modules or external client tools can be used for calibration of material models with the resulting material file linked to the source data. The accuracy of the reduced order model can be checked by running a validation simulation against a physical test. Models can be published and released into a master CAE materials library output where they can be used to model such materials for a variety of target solvers. This process improves the reliability and accuracy of composites simulation.
...read full post
Aerospace and Defense
Automotive
Structural Analysis
Composites
Presentations
Materials Information Management
October 07, 2017 | by DatapointLabs | views 5481
Physically accurate simulation is a requirement for initiatives such as late-stage prototyping, additive manufacturing, and digital twinning. Simulations use mathematical models to replicate physical reality. Verification and validation
(V&V) is an important step for high-fidelity simulation. While verification is a way to check the accuracy of these
models, factors such as simulation settings, element type, mesh size, choice of material model, material parameter conversion process, quality and suitability of material property data used can have a large impact on simulation quality. Validation presents a means to check simulation accuracy against a physical experiment.
These validations are a valuable tool to measure solver accuracy prior to use in product development. Confidence is gained that the simulation replicates real-life physical
behavior.
...read full post
Presentations
Validation
3D Printing
August 02, 2017 | by DatapointLabs | views 6070
The modeling of material behavior for injection molded plastics is a vital step for good simulation results. We detail the types of material data needed by various injection-molding simulation programs, factors that can affect simulation quality including test techniques and process variables such as moisture content. The case of fiber filled plastics is covered along with the extension to structural analysis applications.
...read full post
Plastics
Viscoelastic
Rate Dependency
Injection Molding
Nonlinear Material Models
Structural Analysis
Moldflow
LS-DYNA
Abaqus
Moldex3D
DIGIMAT
SIGMASOFT
Universal Molding
Simpoe-Mold
Presentations
Validation
June 12, 2017 | by DatapointLabs | views 4553
Physically accurate simulation is a requirement for initiatives such as late-stage prototyping, additive manufacturing and digital twinning. The use of mid-stage validation has been shown to be a valuable tool to measure solver accuracy prior to use in simulation. Factors such as simulation settings, element type, mesh size, choice of material model, the material model parameter conversion process, quality and suitability of material property data used can all be evaluated. These validations do not use real-life parts, but instead use carefully designed standardized geometries in a controlled physical test that probes the accuracy of the simulation. With this a priori knowledge, it is possible to make meaningful design decisions. Confidence is gained that the simulation replicates real-life physical behavior. We present three case studies using different solvers and materials, which illustrate the broad applicability of this technique.
...read full post
Mechanical
Plastics
Rubbers
Metals
Structural Analysis
LS-DYNA
Abaqus
ANSYS
Research Papers
Presentations
Validation
3D Printing
May 31, 2017 | by Matereality | views 6464
Systems simulations involve material models for many materials. Since different kinds of simulations may be performed ranging from NVH to crash, such material files exist for a variety of solvers. It is a difficult task to ensure the self-consistency of material nomenclature for all these cases, such that the materials information is current and the right material files are used for each material. We present a system where materials information is uniformly deployed to CAD and CAE from libraries set up in Matereality. Consistent naming conventions and unit systems are used. Material files are linked to source material data for reference and traceability.
...read full post
Papers
Presentations
ANSA
Matereality
Materials Information Management
May 10, 2017 | by Matereality | views 7390
We describe a new software component that takes into consideration the unique multi-variate nature of LS-DYNA material models. Rate-dependent models require adjustment and tuning of many material parameters to fit the rate-dependent tensile properties. Drawing upon a robust back-end data model, a graphical user interface provides drag and drop capability to allow the user to perform tasks such as model extrapolation beyond tested data, modulus change, rate dependency tuning and failure criteria adjustment while assuring self-consistency of the underlying material model. Unit system conversions are also facilitated, eliminating error and ensuring that material inputs to simulation correctly reflect the intent of the CAE analyst. The utility of the Matereality CAE modelers is illustrated with examples for LS-DYNA material models MAT_019, MAT_024 and MAT_089 LCSR.
...read full post
Mechanical
Rate Dependency
Yielding/Failure Analysis
LS-DYNA
Papers
Presentations
Matereality
April 06, 2017 | by DatapointLabs | views 4961
Performing simulations that can approximate the material behavior of ductile plastics is daunting. Factors such as nonlinear elasticity, inclusion of volumetric and deviatoric behavior, finding and correctly applying the proper material data to create failure criteria are only a few hurdles. A variety of material models exist, each with numerous settings and varied parameter conversion methods. Combined, these cause a great deal of uncertainty for the FEA user. In previous papers, we delved into material models for both LS-DYNA (MAT089, MAT024, and MAT187) and ABAQUS (*ELASTIC, *PLASTIC) using mid-stage validation as a technique to probe solver accuracy. In this presentation, we summarize our findings on the benefits of this combined approach as a general tool to test and tune simulations for greater reliability.
...read full post
Mechanical
Plastics
Automotive
High Speed Testing
Nonlinear Material Models
Structural Analysis
Universal Crash
Presentations
Validation
October 21, 2016 | by DatapointLabs | views 6299
Plastics exhibit non-linear viscoelastic behavior followed by a combination of deviatoric and volumetric plastic deformation until failure. Capturing these phenomena correctly in simulation presents a challenge because of limitations in commonly used material models. We follow an approach where we outline the general behavioral phenomena, then prescribe material models for handling different phases of plastics deformation. Edge cases will then be covered to complete the picture. Topics to be addressed include: Using elasto-plasticity; When to use hyperelasticity; Brittle polymers – filled plastics; Failure modes to consider; Criteria for survival; Choosing materials; Spatial non-isotropy from injection molding; Importance of residual stress; Visco-elastic and creep effects; Strain-rate effects for drop test and crash simulations; Fitting material data to FEA material models; The use of mid-stage validation as a tool to confirm the quality of simulation before use in real-life applications.
...read full post
Density
Rheology
Thermal
Mechanical
Plastics
Rubbers
Hyperelastic
Viscoelastic
Plasticity
Rate Dependency
Yielding/Failure Analysis
Injection Molding
Structural Analysis
ANSYS
Presentations
Validation
October 05, 2016 | by DatapointLabs | views 5507
Hyperelastic material models are complex in nature requiring stress-strain properties in uniaxial, biaxial and shear modes. The data need to be self-consistent in order to fit the commonly used material models. Choosing models and fitting this data to these equations adds additional uncertainty to the process. We present a validation mechanism where, using of a standard validation experiment one can compare results from a simulation and a physical test to obtain a quantified measure of simulation quality. Validated models can be used with greater confidence in the design of real-life components.
...read full post
Mechanical
Hyperelastic
Structural Analysis
ANSYS
Papers
Presentations
Validation
October 04, 2016 | by DatapointLabs | views 4894
Finite element analysis of plastics contains assumptions and uncertainties that can affect simulation accuracy. It is useful to quantify these effects prior to using simulation for real-life applications. A mid-stage validation uses a controlled physical test on a standardized part to compare results from simulation to physical experiment. These validations do not use real-life parts but carefully designed geometries that probe the accuracy of the simulation; the geometries themselves can be tested with boundary conditions that can be simulated correctly. In one study, a quasi-static three-point bending experiment of a standardized parallel ribbed plate is performed and simulated, using Abaqus. A comparison of the strain fields resulting from the complex stress state on the face of the ribs obtained by digital image correlation (DIC) vs. simulation is used to quantify the simulation's fidelity. In a second study, a dynamic dart impact experiment is validated using LS-Dyna probing the multi-axial deformation of a polypropylene until failure.
...read full post
Mechanical
Plastics
Automotive
Structural Analysis
LS-DYNA
Abaqus
Presentations
Validation
July 05, 2016 | by Hubert Lobo | views 4924
We will focus on our work related to the testing, modeling and validation of simulation for crash
and durability applications, including testing techniques, software tools for material parameter conversion, and
the use of a mid-stage validation process that uses standardized experiments to check the accuracy of the simulation prior to use in real-life applications. In addition, we present a short introduction to the Knowmats initiative which seeks to collect posts and links to papers from industry experts as a reference for simulation professionals.
...read full post
Mechanical
Plastics
Automotive
High Speed Testing
Nonlinear Material Models
Structural Analysis
Universal Crash
Presentations
Validation
June 24, 2016 | by Massimo Nutini | views 5245
Topics covered: Damage in mineral filled polypropylene under impact conditions; damage modeling and parameter identification (prior art, LyondellBasell contributions, debate in the CAE community); experimental and numerical validation; next steps
...read full post
Mechanical
Plastics
Rate Dependency
Yielding/Failure Analysis
Automotive
Material Supplier
High Speed Testing
LS-DYNA
Presentations
September 23, 2015 | by DatapointLabs | views 4451
Thermoplastic materials are one of the largest categories of materials to be injection molded. Moisture-sensitive materials can lead to issues in the molding process. Simulation of the injection molding process requires sophisticated and exact material properties to be measured. This presentation discusses the testing required to characterize a thermoplastic material for use in SIGMASOFT, as well as the effects of moisture on viscosity measurement of a moisture-sensitive material. Consequences of basing designs on wet or dry materials are covered. Implementation of material data into the software to produce a successful injection molding simulation simulation is described.
...read full post
Rheology
Plastics
CAE Vendor/Supplier
Injection Molding
Nonlinear Material Models
SIGMASOFT
Presentations
September 15, 2015 | by Altair Engineering | views 4983
With the growing interest in additive manufacturing in the aerospace industry, there is a desire to accurately simulate the behavior of components made by this process. The layer by layer print process appears to create a morphology that is different from that from conventional manufacturing processes. This can have dramatic impact on the material properties, which in turn, can affect how the material is modeled in simulation. We tested an additively manufactured metal part for mechanical properties and validated the material model used in a linear static simulation.
...read full post
Mechanical
Aerospace and Defense
CAE Vendor/Supplier
Structural Analysis
Altair RADIOSS
Presentations
Validation
3D Printing
August 24, 2015 | by Altair Engineering | views 3817
Import your Matereality CAE Material cards directly into HyperWorks.
...read full post
Presentations
July 28, 2015 | by Paul Du Bois | views 4750
FAA William J Huges Technical Center (NJ) conducts a research project to simulate failure in aeroengines and fuselages, main purpose is blade-out containment studies. This involved the implementation in LS-DYNA of a tabulated generalisation of the Johnson-Cook material law with regularisation to accommodate simulation of ductile materials.
...read full post
Mechanical
Metals
Rate Dependency
Yielding/Failure Analysis
Aerospace and Defense
Automotive
High Speed Testing
LS-DYNA
Presentations
Validation
April 29, 2015 | by Patrick Cunningham | views 4419
This demonstration showing how to analyze plastic parts using finite element analysis was given by Patrick Cunningham at CAE Associates' Accurate FEA of Engineering Plastics seminar, held on October 14, 2014 in Tarrytown, NY.
...read full post
Plastics
Plasticity
Presentations
March 12, 2015 | by DatapointLabs | views 5653
Finite-element analysis and injection-molding simulation are two technologies that are seeing widespread use today in the design of plastic components. Limitations exist in our ability to mathematically describe the complexity of polymer behavior to these software packages. Material models commonly used in finite-element analysis were not designed for plastics, making it difficult to correctly describe non-linear behavior and plasticity of these complex materials. Time-based viscoelastic phenomena further complicate analysis. Dealing with fiber fillers brings yet another layer of complexity. It is vital to the plastics engineer to comprehend these gaps in order to make good design decisions. Approaches to understanding and dealing with these challenges, including practical strategies for everyday use, will be discussed.
...read full post
Mechanical
Plastics
Blow Molding
Extrusion
Injection Molding
Nonlinear Material Models
Structural Analysis
Thermoforming
LS-DYNA
Abaqus
DIGIMAT
Presentations
November 21, 2014 | by DatapointLabs | views 4666
Thermoplastic materials are one of the largest categories of materials to be injection molded. Simulation of the injection molding process requires sophisticated and exact material properties to be measured. This presentation will discuss the testing required to characterize a material for use in SIGMASOFT, as well as the significance of material model parameters. Differences in testing methodology for amorphous and semi-crystalline polymers will be covered, along with step-by-step implementation into the software to produce a successful injection molding simulation simulation.
...read full post
Plastics
Electonics/Electrical
Injection Molding
Nonlinear Material Models
Structural Analysis
SIGMASOFT
Presentations
October 28, 2014 | by DatapointLabs | views 4878
It has long been desired to quantify the accuracy of simulation results. Through developments in digital image correlation (DIC) techniques, it is now possible to quantify the deviation between simulation and real life experimentation. In this paper, three-dimension DIC measurements of deformed parts are compared to deformed surfaces predicted in simulation. Using DIC, it is possible to import deformed surface elements from simulation and map the magnitude of deviation from the measurements of the actual deformed shape.
...read full post
High Speed Testing
Nonlinear Material Models
Structural Analysis
ANSYS
Presentations
Validation
October 08, 2014 | by DatapointLabs | views 4536
LS-DYNA software contains a wealth of material models that allow for the simulation of transient phenomena. The Matereality® CAE Modeler is a generalized pre-processor software used to convert material property data into material parameters for different material models used in CAE. In a continuation of previously presented work, we discuss the extension of the CAE Modeler software to commonly used material models beyond MAT_024. Software enhancements include advanced point picking to perform extrapolations beyond the tested data, as well as the ability to fine-tune the material models while scrutinizing the trends shown in the underlying raw data. Advanced modeling features include the ability to tune the rate dependency as well as the initial response. Additional material models that are quite complex and difficult to calibrate are supported, including those for hyperelastic and viscoelastic behavior. As before, the written material cards are directly readable into the LS-DYNA software, but now they can also be stored and catalogued in a material card library for later reuse.
...read full post
Plastics
Rubbers
Foams
Metals
High Speed Testing
Injection Molding
Nonlinear Material Models
Structural Analysis
LS-DYNA
Composites
Presentations
September 21, 2014 | by DatapointLabs | views 4318
Plastics exhibit non-linear viscoelastic behavior followed by a combination of deviatoric and volumetric plastic deformation until failure. Capturing these phenomena correctly in simulation presents a challenge because of the inadequacy of currently used material models. We follow an approach where we outline the general behavioral phenomena, then prescribe material models for handling different phases of plastics deformation. Edge cases will then be covered to complete the picture. Topics to be addressed include: Using elasto-plasticity; When to use hyperelasticity; Brittle polymers – filled plastics; Failure modes to consider; Criteria for survival; Choosing materials; Spatial non-isotropy from injection molding; Importance of residual stress; Visco-elastic and creep effects; Strain-rate effects for drop test and crash simulations; Fitting material data to FEA material models.
...read full post
Plastics
High Speed Testing
Nonlinear Material Models
ANSYS
Presentations
August 12, 2014 | by DatapointLabs | views 5381
Material specifications define properties for incoming materials to meet required criteria. We present software that manages creation of material specifications, input of properties and material composition; and provides a way to evaluate qualification per specification. While it is designed for OEM/Tier n environments, it is also applicable for materials suppliers.
...read full post
Automotive
Moldflow
LS-DYNA
Abaqus
ANSYS
Moldex3D
DIGIMAT
SIGMASOFT
SOLIDWORKS
ADINA
ANSYS FIDAP
B-Sim
Cadmould
Altair HyperXtrude
MSC.DYTRAN
MSC.MARC
MSC.NASTRAN
Universal Molding
NX Nastran
PAM-CRASH
PAM-FORM
PlanetsX
Polycad
POLYFLOW Blow Molding
POLYFLOW Extrusion
POLYFLOW Thermoforming
PolyXtrue
Altair RADIOSS
Simpoe-Mold
T-Sim
VEL
VISI Flow
WinTXS
Presentations
May 13, 2014 | by DatapointLabs | views 5214
Plastics appeared as design materials of choice about 30 years ago. They brought with them huge design challenges because their multi-variable, non-linear nature was not well understood by engineers trained to work in a linear elastic world. We outline a 20 year journey accompanying our customers in their efforts to understand and simulate these remarkable materials to produce the highly reliable plastic products of today. We discuss challenges related to processes such as injection molding vs. blow-molding; coping with filled plastics; the difficulties of modeling polymers for crash applications. We include our latest findings related to volumetric yield in polymers and its relationship to failure. We describe the material database technology that was created to store this kind of multi-variable data and the analytical tools created to help the CAE engineer understand and use plastics material data.
...read full post
Plastics
Automotive
Blow Molding
High Speed Testing
Injection Molding
Nonlinear Material Models
Structural Analysis
Moldflow
LS-DYNA
Abaqus
ANSYS
Moldex3D
DIGIMAT
Universal Crash
Universal Molding
Universal Structural
PAM-CRASH
Presentations
April 30, 2014 | by DatapointLabs | views 4326
The use of CAE in design decision-making has created a need for proven simulation accuracy. The two areas where simulation touches the ground are with material data and experimental verification and validation (V&V). Precise, well designed and quantitative experiments are key to ensure that the simulation initiates with correct material behavior. Similar validation experiments are needed to verify simulation and manage the risk associated with this predictive technology.
...read full post
Plastics
Rubbers
Foams
Metals
Automotive
Biomedical
Building Materials
Consumer Products
Energy and Petroleum
Material Supplier
Toys/Sporting Goods
Electonics/Electrical
Industrial Goods
CAE Vendor/Supplier
Mold Maker/Designer
Nonlinear Material Models
Structural Analysis
Abaqus
Composites
SIMULIA
Presentations
February 13, 2014 | by DatapointLabs | views 4405
As part of Cornell University's mechanical engineering curriculum and study of classical beam theory, an aluminium beam is deformed to a specific load. Theoretical strains are calculated at certain points along the beam using beam theory, and then verified by using strain gauges placed at these points on the beam. This experiment is then extended to simulation of the same test setup in simulation software, where strains are analyzed at the same points. Discrepancies between the simulation, theory, and strain gauge results have often plagued the test, especially when incorporating more complex beam design. Through use of digital image correlation (DIC) it is possible to pinpoint some of the problem areas in the beam analysis and provide a better understanding of the localized strains that occur at any point in the deformed beam. The use of DIC provides a full field validation of simulation data, rather than a single spot check that strain gauges can provide. This validation technique helps to eliminate error that is associated with strain gauge placement and the possibility of missing strain hot spots that can arise when analyzing complex deformations or geometries.
...read full post
Plastics
Metals
Aerospace and Defense
Automotive
Biomedical
Building Materials
Consumer Products
Material Supplier
Toys/Sporting Goods
Electonics/Electrical
Industrial Goods
CAE Vendor/Supplier
Mold Maker/Designer
Structural Analysis
ANSYS
Presentations
October 29, 2013 | by DatapointLabs | views 4489
There is interest in quantifying the differences between simulation and real life experimentation. This kind of work establishes a baseline for more complex simulations bringing a notion of traceability to the practice of CAE. We present the use of digital image correlation as a way to capture strain fields from component testing and compare these to simulation. Factors that are important in ensuring fidelity between simulation and experiment will be discussed.
...read full post
Plastics
Aerospace and Defense
Automotive
Biomedical
Material Supplier
Electonics/Electrical
CAE Vendor/Supplier
Nonlinear Material Models
Structural Analysis
Abaqus
Composites
SIMULIA
Presentations
April 07, 2013 | by DatapointLabs | views 4326
Today, CAE is integrated with modern automotive product development. This creates new challenges for departments that support new product development. In the materials arena, the testing is elevated to much higher levels of sophistication and precision to accommodate the complex material models used in CAE. It is no longer simple matter to convert raw data into material model parameters. We present an end-to-end strategy that gives automakers a well managed pathway to transforming to simulation-based design. We operate a quick-turnaround expert material testing lab to support high-end CAE and product development. We provide a data management software designed specifically to capture and display material data of any complexity. The software can transform raw material data into material parameter files for most commonly used simulations. The CAE Modeler software is of adequate sophistication to fit equations to data, visualize material models along with raw data, and output material cards. Examples for high strain-rate crash material modeling will be presented.
...read full post
Automotive
CAE Vendor/Supplier
Nonlinear Material Models
Structural Analysis
Presentations
May 08, 2011 | by DatapointLabs | views 4652
DatapointLabs' TestPaks (material testing + model calibration + Abaqus input decks) for rate-dependent, hyperelastic, viscoelastic, NVH, and the use of Abaqus CAE Modeler to transform raw data into material cards will be presented. A representative from Idiada will present a case study explaining the use of DatapointLabs’ material data and TestPaks for simulation.
...read full post
Plastics
Rubbers
Foams
Metals
High Speed Testing
Nonlinear Material Models
Structural Analysis
Abaqus
Composites
SIMULIA
Presentations
March 10, 2011 | by DatapointLabs | views 4338
The testing of materials for use in crash and safety simulations and the conversion of test data into material models is a process that is not well standardized in the industry. Consequently, CAE users face uncertainty and risk in this process that can have a negative impact on simulation quality. In this workshop, we present approaches currently used in the US for the gathering of high quality test data plus the acclaimed Matereality CAE Modeler software that is used to transform high strain-rate data into crash material cards.
...read full post
Automotive
High Speed Testing
Nonlinear Material Models
Structural Analysis
LS-DYNA
Abaqus
ANSYS
DIGIMAT
SIGMASOFT
NX Nastran
PAM-CRASH
Altair RADIOSS
Presentations
January 19, 2011 | by DatapointLabs | views 4044
We present a methodology for DIGIMAT users to perform the DIGIMAT MX reverse engineering process to obtain material parameter inputs for crash, elasto-plastic, creep and visco-elasticity. The injection-molding process used involves a standardized plaque geometry with fully developed flow, with test specimens taken from a specific plaque location. A standardized testing procedure is applied and the resulting DIGIMAT MX inputs are handled in a streamlined data stream, which saves time and improves the reliability of the reverse engineering process. The DIGIMAT MX reverse engineering itself can be performed as a service in collaboration with e-Xstream. This gives the user a speedy and tightly controlled process for performing complex finite element analysis with filled plastics
...read full post
Blow Molding
Extrusion
High Speed Testing
Injection Molding
Nonlinear Material Models
Structural Analysis
DIGIMAT
Presentations
July 21, 2010 | by DatapointLabs | views 4427
The limitations of modeling materials for simulation are discussed, including lack of clarity in material model requirements, gaps between the material data and the model to which it will be fitted, issues in obtaining pertinent properties, difficulties in parameter conversion (fitting), and preparation of input files for the software being used. Means to address these limitations are presented, including understanding the model completely, measuring the correct data with precision on the right material, selecting the best model for the data and ensuring the best fit of the model to the data, validating the model against a simple experiment, and following best practices to create an error-free input file.
...read full post
Plastics
Rubbers
Foams
Aerospace and Defense
Automotive
Biomedical
Consumer Products
Material Supplier
Toys/Sporting Goods
Electonics/Electrical
Industrial Goods
Packaging
Home Appliances
Presentations
May 28, 2010 | by DatapointLabs | views 4216
Material modeling has become increasing important as ANSYS software has added analysis capabilities such as non-linear CAE, crash, CFD, and manufacturing process simulation. Poor material representaion brings risk to CAE and product development. Material data needs for various material models are discussed.
...read full post
ANSYS
ANSYS FIDAP
MSC.NASTRAN
Presentations
May 26, 2010 | by DatapointLabs | views 4155
Many material models are available for crash simulation. However, common models are not designed for plastics. We present best practices developed for adapting common models to plastics, as well as best testing protocols to generate clean, accurate rate-dependent data. In addition, we present a streamlined process to convert raw data to LS-DYNA material cards, and harmonized material datasets that allow the same raw data to be used for other crash and rate-dependent analysis software.
...read full post
Plastics
Automotive
High Speed Testing
Nonlinear Material Models
Structural Analysis
LS-DYNA
Abaqus
ANSYS
PAM-CRASH
Altair RADIOSS
Presentations
February 18, 2009 | by DatapointLabs | views 4316
Abaqus’ Non-linear NVH capability permits the capture of material behavior of rubber seals and bushings, plastic parts and foam inserts which have a significant influence on the simulation. In this presentation, we discuss material calibration procedures for this application.
...read full post
Plastics
Rubbers
Automotive
Building Materials
Material Supplier
Nonlinear Material Models
Structural Analysis
Abaqus
Presentations
May 16, 2008 | by DatapointLabs | views 4708
We present a perspective on material modeling as applied to mold analysis requirements. Melt-solid transitions and the case for a unified material model are discussed, along with prediction of post-filling material behavior and shrinkage, and the impact of viscous heating on flow behavior and material degradation.
...read full post
Plastics
Rubbers
Foams
Metals
Aerospace and Defense
Automotive
Biomedical
Consumer Products
Energy and Petroleum
Electonics/Electrical
Industrial Goods
CAE Vendor/Supplier
Packaging
Home Appliances
Blow Molding
Extrusion
Injection Molding
Nonlinear Material Models
Moldflow
Composites
Presentations
Gels
Oils/Lubricants
Waxes
November 27, 2007 | by DatapointLabs | views 4729
Many LS-DYNA models are used for plastics crash simulation. However, common models are not designed for plastics. We present best practices developed for adapting common models to plastics, as well as best testing protocols to generate clean, accurate rate-dependent data.
...read full post
Metals
Aerospace and Defense
Automotive
Consumer Products
Material Supplier
Industrial Goods
Packaging
High Speed Testing
Nonlinear Material Models
Structural Analysis
LS-DYNA
Abaqus
ANSYS
MSC.DYTRAN
PAM-CRASH
Presentations
September 13, 2000 | by DatapointLabs | views 4274
We discuss open issues in material models for plastics and propose better means of acquiring the right material data for Moldflow simulations using current testing technologies.
...read full post
Plastics
Material Supplier
Mold Maker/Designer
Injection Molding
Moldflow
Presentations
March 16, 1999 | by DatapointLabs | views 4603
We discuss developments in viscosity modeling. New models are not generalized, but are designed to predict expected trends for polymers and incorporate both Newtonian and shear-thinning behavior.
...read full post
Plastics
Material Supplier
Mold Maker/Designer
Injection Molding
Moldflow
Presentations
July 14, 1998 | by DatapointLabs | views 4328
We discuss material properties in injection molding simulations, including the definition of property requirements, identification of evaluation parameters, and the role of material properties at each stage of the injection molding process, from mold filling through cooling, post-filling and shrinkage/warpage considerations.
...read full post
Plastics
Material Supplier
Mold Maker/Designer
Packaging
Injection Molding
Moldflow
Moldex3D
Cadmould
C-MOLD
Presentations