October 21, 2016 | by DatapointLabs | views 6350
Plastics exhibit non-linear viscoelastic behavior followed by a combination of deviatoric and volumetric plastic deformation until failure. Capturing these phenomena correctly in simulation presents a challenge because of limitations in commonly used material models. We follow an approach where we outline the general behavioral phenomena, then prescribe material models for handling different phases of plastics deformation. Edge cases will then be covered to complete the picture. Topics to be addressed include: Using elasto-plasticity; When to use hyperelasticity; Brittle polymers – filled plastics; Failure modes to consider; Criteria for survival; Choosing materials; Spatial non-isotropy from injection molding; Importance of residual stress; Visco-elastic and creep effects; Strain-rate effects for drop test and crash simulations; Fitting material data to FEA material models; The use of mid-stage validation as a tool to confirm the quality of simulation before use in real-life applications.
...read full post
Density
Rheology
Thermal
Mechanical
Plastics
Rubbers
Hyperelastic
Viscoelastic
Plasticity
Rate Dependency
Yielding/Failure Analysis
Injection Molding
Structural Analysis
ANSYS
Presentations
Validation
June 03, 2016 | by DatapointLabs | views 8141
This book is intended to be a companion to the NAFEMS book, "An Introduction to the Use of Material Models in FE". It informs Finite Element Analysis users of the manner and methodologies by which materials are tested in order to calibrate material models currently implemented in various FEA programs. While the authors seek first to satisfy the basic material models outlined in the companion book, they make important extensions to FEA used in currently active areas including explicit simulation.
...read full post
Mechanical
Plastics
Rubbers
Foams
Metals
Hyperelastic
Viscoelastic
Plasticity
Rate Dependency
Yielding/Failure Analysis
Aerospace and Defense
Automotive
Biomedical
Building Materials
Consumer Products
Energy and Petroleum
Material Supplier
Furniture
Industrial Goods
CAE Vendor/Supplier
Packaging
Home Appliances
Research Laboratory
High Speed Testing
Nonlinear Material Models
Structural Analysis
LS-DYNA
Abaqus
ANSYS
DIGIMAT
SOLIDWORKS
MSC.DYTRAN
MSC.MARC
MSC.NASTRAN
NX Nastran
PAM-COMFORT
PAM-CRASH
Altair RADIOSS
SIMULIA
Book Review
May 24, 2016 | by DatapointLabs | views 5938
Simulations contain assumptions and uncertainties that a designer must evaluate to obtain a measure of accuracy. The assumptions of the product design can be differentiated from the ones for the solver and material model through the use of a mid-stage validation. An open loop validation uses a controlled test on a standardized part to compare results from a simulation to the physical experiment. From the validation, confidence in the material model and solver is gained. In this study, the material properties of a polypropylene are tested to characterize for an *ELASTIC *PLASTIC model in ABAQUS. A validation of a quasi-static three-point bending experiment of a parallel ribbed plate is then performed and simulated. A comparison of the strain fields resulting from the complex stress state on the face of the ribs obtained by digital image correlation (DIC) vs. simulation is used to quantify the simulation's fidelity.
...read full post
Plastics
Plasticity
Automotive
Biomedical
Consumer Products
Material Supplier
Toys/Sporting Goods
Furniture
Packaging
Home Appliances
Nonlinear Material Models
Structural Analysis
Abaqus
Research Papers
Validation
May 06, 2016 | by Megan Lobdell | views 4160
I found this to be a good explanation of calculating linear Drucker Prager variables for Abaqus.
...read full post
Mechanical
Plastics
Plasticity
Nonlinear Material Models
Abaqus
August 26, 2015 | by Massimo Nutini | views 4447
The airbag door system is one of the most delicate aspects in the design phase of a car instrument panel: seamless systems are increasingly used, which combine styling criteria with good functional performances. These systems typically include a tear seam, which may be obtained through laser scoring, to pre-determine the location of the opening during airbag deployment. The design of the scoring line is currently validated through experimental tests on real life exemplars, submitted to airbag deployment, resulting in high development times and relevant costs. This is the main reason which suggests proposing numerical simulation in the design phase, not to substitute actual part homologation by testing but in order to limit the scope and complexity of the experimental campaign, thus reducing the development costs and the time to market. So far, modeling the scoring line has been difficult due to limitations in the testing methods and simulation codes available to the industry. The methodology proposed in this paper takes advantage from the availability of a material law as LS-Dyna SAMP-1, with polymer-dedicated plasticity, damage model and strain-rate dependent failure criteria, which is supported by local strain measurement used for material characterization. The method, here described in detail, is validated on a benchmark test, consisting in the real and virtual testing on a variety of scoring profiles obtained on a polypropylene box submitted to high speed impact test.
...read full post
Plasticity
Yielding/Failure Analysis
Automotive
High Speed Testing
LS-DYNA
Research Papers
Validation
July 27, 2015 | by Paul Du Bois | views 4877
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LS-DYNA, there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have been focused on creating the plasticity portion of the model. The Tsai-Wu development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic material model with a non-associative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.
...read full post
Mechanical
Plasticity
Yielding/Failure Analysis
Aerospace and Defense
Automotive
High Speed Testing
LS-DYNA
Composites
Research Papers
Validation
July 27, 2015 | by Paul Du Bois | views 4483
"A general purpose orthotropic elasto-plastic computational constitutive material model has been
developed to accurately predict the response of composites subjected to high velocity impact.
The three-dimensional orthotropic elasto-plastic composite material model is being implemented
initially for solid elements in LS-DYNA® as MAT213. In order to accurately represent the
response of a composite, experimental stress-strain curves are utilized as input, allowing for a
more general material model that can be used on a variety of composite applications. The
theoretical details are discussed in a companion paper. This paper documents the
implementation, verification and validation of the material model using the T800-F3900
fiber/resin composite material."
...read full post
Mechanical
Plasticity
Yielding/Failure Analysis
Aerospace and Defense
Automotive
High Speed Testing
LS-DYNA
Composites
Research Papers
Validation
July 27, 2015 | by Paul Du Bois | views 3965
"Reliable prediction of the behavior of structures made from polymers is a topic under considerable investigation in
engineering practice. Especially, if the structure is subjected to dynamic loading, constitutive models considering
the mechanical behavior properly are still not available in commercial finite element codes yet. In our paper, we
present a new constitutive law for polymers which recovers important phenomena like necking, crazing, strain rate
dependency, unloading behavior and damage. In particular, different yield surfaces in compression and tension and
strain rate dependent failure, the latter with damage induced erosion, is taken into account. All relevant parameters
are given directly in the input as load curves, i.e. time consuming parameter identification is not necessary. Moreover,
the models by von Mises and Drucker-Prager are included in the description as special cases.
With the present formulation, standard verification test can be simulated successfully: tensile and compression test,
shear test and three point bending tests."
...read full post
Mechanical
Plastics
Plasticity
Rate Dependency
Yielding/Failure Analysis
Automotive
High Speed Testing
LS-DYNA
Research Papers
July 27, 2015 | by Paul Du Bois | views 6396
"Reliable prediction of damage and failure in structural parts is a major challenge posed
in engineering mechanics. Although solid material models predicting the deformation
behaviour of a structure are increasingly available, reliable prediction of failure remains
still open.
With SAMP (a Semi-Analytical Model for Polymers), a general and flexible plasticity
model is available in LS-DYNA since version 971. Although originally developed for
plastics, the plasticity formulation in SAMP is generally applicable to materials that
exhibit permanent deformation, such as thermoplastics, crushable foam, soil and metals.
In this paper, we present a generalized damage and failure procedure that has been implemented
in SAMP and will be available in LS-DYNA soon. In particular, important
effects such as triaxiality, strain rate dependency, regularization and non-proportional
loading are considered in SAMP. All required physical material parameters are provided
in a user-friendly tabulated way. It is shown that our formalism includes many different
damage and failure models as special cases, such as the well-known formulations by
Johnson-Cook, Chaboche, Lemaitre and Gurson among others. "
...read full post
Mechanical
Plastics
Plasticity
Rate Dependency
Yielding/Failure Analysis
Automotive
High Speed Testing
LS-DYNA
Research Papers
April 29, 2015 | by Patrick Cunningham | views 4443
This demonstration showing how to analyze plastic parts using finite element analysis was given by Patrick Cunningham at CAE Associates' Accurate FEA of Engineering Plastics seminar, held on October 14, 2014 in Tarrytown, NY.
...read full post
Plastics
Plasticity
Presentations
October 14, 2005 | by Paul Du Bois | views 4101
The numerical simulation of structural parts made from plastics is becoming increasingly important nowadays. The fact that almost any structural requirement can be combined in a lightweight, durable and cost effective structure is the driving force behind its widespread application. More and more structural relevant parts are being constructed and manufactured from plastics. This on the other hand drives the demand for reliable and robust methods to design these parts and to predict their structural behaviour. the key ingredients that need to be available are verified, calibrated and validated constitutive models for any family of plastic material. This holds not only true for crashworthiness applications but for any other application field.
...read full post
Plastics
Plasticity
Rate Dependency
Yielding/Failure Analysis
Automotive
Nonlinear Material Models
LS-DYNA