Datapoint Newsletter: Winter '16, Volume 22.1
January 21, 2016 | by Datapoint Newsletters | views 5191
Control Enterprise Materials Information; ANSA Partnership; New TestPaks for RADIOSS and PolyXtrue; Material Model Validation
January 21, 2016 | by Datapoint Newsletters | views 5191
Control Enterprise Materials Information; ANSA Partnership; New TestPaks for RADIOSS and PolyXtrue; Material Model Validation
June 09, 2015 | by PolyXtrue | views 4211
Bi-layer flow in a profile coextrusion die was simulated. Prediction of post-die changes in extrudate profile was included in the simulation. Mesh partitioning technique was used to allow the coextrusion simulation without modifying the finite element mesh in the profile die. Effect of polymer viscosities on the change in profile shape after the polymers leave the die is analyzed. It is found that a difference in the viscosities of the coextruded polymers can lead to a highly non-uniform velocity distribution at die exit. Accordingly, post-die changes in extrudate shape were found to be widely different when the polymers in the two coextruded layers were changed.
June 09, 2015 | by PolyXtrue | views 4218
Flow in a flat die with coat hanger type of manifold is simulated allowing slip on die walls. Flow in the same die was also simulated by enforcing the no-slip condition on the walls. With slip on the die walls, the pressure drop, shear rate, stress, as well as temperature increase in the die, all were smaller than the corresponding values with no-slip condition on the walls. For the case with slip on die walls, since the shear rate is smaller, the elongation rate in the die is found to be the dominant fraction of the total strain rate. Due to its high computational efficiency, the software employed in this work can be effectively used to design extrusion dies for fluids exhibiting slip on die walls.
June 09, 2015 | by PolyXtrue | views 4128
The flow in a coat-hanger die is simulated using the axisymmetric and planar elongational viscosities of a low-density polyethylene (LDPE) resin. Elongational viscosity is found to affect the velocity distribution at the die exit. Also, the predicted pressure drop in the die changed significantly when the effect of elongational viscosity was included in the simulation. However, elongational viscosity had only a minor effect on the temperature distribution in the die. Predicted pressure drop is compared with the corresponding experimental data.
June 09, 2015 | by PolyXtrue | views 4270
For two low-density polyethylenes and two polystyrenes, axisymmetric and planar elongational viscosities are estimated using entrance loss data from capillary and slit rheometers, respectively. The elongational viscosity is estimated by optimizing the values of various parameters in the Sarkar–Gupta elongational viscosity model such that the entrance loss predicted by a finite element simulation agrees with the corresponding experimental data. The predicted entrance loss is in good agreement with the experimental data at high flow rates. The difference in the experimental and predicted entrance loss at lower flow rates might have been caused by large error in the experimental data in this range.
June 09, 2015 | by PolyXtrue | views 4080
The elongational viscosity model proposed by Sarkar and Gupta (Journal of Reinforced Plastics and Composites 2001, 20, 1473), along with the Carreau model for shear viscosity is used for a finite element simulation of the flow in a capillary rheometer. The entrance pressure loss predicted by the finite element flow simulation is matched with the corresponding experimental data to predict the parameters in the elongational viscosity model. To improve the computational efficiency, various elongational viscosity parameters are optimized individually. Estimated elongational viscosity for a Low Density Polyethylene (DOW 132i) is reported for two different temperatures.
June 09, 2015 | by PolyXtrue | views 4026
A new elongational viscosity model along with the Carreau-Yasuda model for shear viscosity is used for a finite element simulation of the flow in a capillary rheometer. The entrance pressure loss predicted by the finite element flow simulation is matched with the corresponding experimental data to predict the parameters in the new elongational viscosity model.
Rheology Plastics Extrusion Injection Molding PolyXtrue Research Papers
June 09, 2015 | by PolyXtrue | views 4301
A new elongational viscosity model along with the Carreau-Yasuda model for shear viscosity is used for a finite element simulation of the flow in a capillary rheometer die. The entrance pressure loss predicted by the finite element flow simulation is matched with the corresponding experimental data to predict the parameters in the new elongational viscosity model. For two different polymers, the predicted elongational viscosity is compared with the corresponding predictions from Cogswell’s analysis and K-BKZ model.
August 12, 2014 | by DatapointLabs | views 5411
Material specifications define properties for incoming materials to meet required criteria. We present software that manages creation of material specifications, input of properties and material composition; and provides a way to evaluate qualification per specification. While it is designed for OEM/Tier n environments, it is also applicable for materials suppliers.
Automotive Moldflow LS-DYNA Abaqus ANSYS Moldex3D DIGIMAT SIGMASOFT SOLIDWORKS ADINA ANSYS FIDAP B-Sim Cadmould Altair HyperXtrude MSC.DYTRAN MSC.MARC MSC.NASTRAN Universal Molding NX Nastran PAM-CRASH PAM-FORM PlanetsX Polycad POLYFLOW Blow Molding POLYFLOW Extrusion POLYFLOW Thermoforming PolyXtrue Altair RADIOSS Simpoe-Mold T-Sim VEL VISI Flow WinTXS Presentations
March 11, 2011 | by Datapoint Newsletters | views 4564
New TestPaks and Partner Updates. International Resellers.
October 28, 2009 | by Datapoint Newsletters | views 4760
Expanded Support for Injection Molding CAE. Direct Data Downloads to Autodesk-Moldflow and Moldex3D. Ansys Polyflow now In-House. Elongational Viscosity Data Using Peldom. NEW Injection Molding Partners.
Moldflow ANSYS Moldex3D SIGMASOFT POLYFLOW Blow Molding POLYFLOW Extrusion POLYFLOW Thermoforming PolyXtrue Simpoe-Mold VISI Flow Newsletters