P.A. Du Bois, S. Kolling, M. Feucht, A. Haufe
July 27, 2015 | by Paul Du Bois | views 6397
"Reliable prediction of damage and failure in structural parts is a major challenge posed in engineering mechanics. Although solid material models predicting the deformation behaviour of a structure are increasingly available, reliable prediction of failure remains still open. With SAMP (a Semi-Analytical Model for Polymers), a general and flexible plasticity model is available in LS-DYNA since version 971. Although originally developed for plastics, the plasticity formulation in SAMP is generally applicable to materials that exhibit permanent deformation, such as thermoplastics, crushable foam, soil and metals. In this paper, we present a generalized damage and failure procedure that has been implemented in SAMP and will be available in LS-DYNA soon. In particular, important effects such as triaxiality, strain rate dependency, regularization and non-proportional loading are considered in SAMP. All required physical material parameters are provided in a user-friendly tabulated way. It is shown that our formalism includes many different damage and failure models as special cases, such as the well-known formulations by Johnson-Cook, Chaboche, Lemaitre and Gurson among others. "
P.A. Du Bois, S. Kolling, M. Feucht, A. Haufe
Mechanical Plastics Plasticity Rate Dependency Yielding/Failure Analysis Automotive High Speed Testing LS-DYNA Research Papers